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Abstract: The increasing energy demand and the changing of energy structure have imposed higher
requirements on the conventional large-scale power plants control. Complexity of the power plant
processes and the frequent change of operation condition make the accurate physical models hard to
obtain for control design. To this end, a data-driven control strategy, the active disturbance rejection
control (ADRC) has received much attention for the estimation and mitigation of uncertain dynamics
beyond the canonical form of cascaded integrators. However, the robustness of ADRC is seldom
discussed in a quantitative manner. In this study, the maximum sensitivity is used to evaluate and
then constrain the robustness of ADRC applied to high-order processes. Firstly, by using the new
idea of the vertical asymptote of the Nyquist curve, a preliminary one-parameter-tuning method is
developed. Secondly, a quantitative relationship between the maximum sensitivity and the tuning
parameter is established using optimization methods. Then, the feasibility and effectiveness of the
proposed method is initially verified in the total air flow control of a power plant simulator. Finally,
field tests on the secondary airflow control in a 330 MWe circulating fluidized bed confirm the merit
of the proposed maximum sensitivity-constrained ADRC tuning.

Keywords: active disturbance rejection control (ADRC); maximum sensitivity; airflow control;
coal-fired power plant

1. Introduction

Power generation control remains a challenge problem due to the increasing electricity demand
and the penetration of renewables—such as wind, solar, and tidal power—into a grid. To cope with the
intermittency of renewable power, large-scale coal-fired power plants are required to operate under
large and frequent variations. The performance of the air control system, one of the important control
systems in the power plant, influences the whole plant safety and the energy efficiency. However, the
accurate physical models of the power plant air systems are difficult to obtain because of the complicate
combustion and heat transfer processes. In addition, the uncertainties brought by frequent variations
impose higher control requirements in faster response and the ability to deal with disturbances.
Therefore, a control strategy with strong ability in reference tracking and disturbance rejection is
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necessary for power plant air control systems. On one hand, it is preferred that the control strategy
relies on accessible control input and output data instead of accurate process models. On the other
hand, the robustness of the control system should be especially considered, as there are many sources
of uncertainties and variations, such as variations in fuel quality, continuous change of working
conditions, and other unknown disturbances.

Robustness is recognized as a ubiquitous system property in many fields ranging from biological
systems and economics to computer science and control systems [1–4]. Robustness means that a system
can handle uncertainty and remain effective under variations. There are many methods to evaluate the
robustness level of a control system. For instance, µ-analysis [5] is considered a mature and efficient
robustness analysis technique but it is difficult to calculate the structured singular value µ [6,7]. Monte
Carlo methods have also been applied to measure performance robustness under random parameters
variation [8–10]. Distribution of typical performance indices is presented when process parameters are
randomly varied, but controller parameters remain unchanged. This image-based evaluation approach
is very intuitive but lacks quantification to some extent.

The maximum sensitivity Ms was proposed as a single robustness index, which can limit the
gain and phase margin simultaneously [11]. The relationship between maximum sensitivity Ms and
gain and phase margin was clarified by Astrom and Hagglund [12]. It was then widely accepted as a
robustness index in linear system control because it has a clear meaning and indicates the worst-case
disturbance amplification of the disturbance. Most importantly, unlike other robustness indices,
which are mainly used for analysis and evaluation, the maximum sensitivity Ms can also be used to
instruct the controller design. Astrom and Hagglund [13] solved the non-convex optimization problem
constrained by maximum sensitivity by finding the largest integral gain ki value on the envelopes
generated by parameter boundaries. Yaniv and Nagurka [14] provided a series of equations for
determining the proportional-integral-derivative (PID) controller parameters satisfying the sensitivity
constraint. Alfaro and Vilanova [15] proposed a proportional-integral (PI) tuning method that achieved
the desired maximum sensitivity by fitting techniques. Li et al. [16] applied the maximum sensitivity
to tune the parameters of fractional internal model control (IMC)-PID controller. In this study, the
maximum sensitivity is also employed to guide the controller design.

The concept of active disturbance rejection control (ADRC) [17–19] has attracted a lot of attention
since the last decade. It is a data-driven control method, because the controller is designed by directly
using input and output data without explicitly using the model information [20]. The key feature
of ADRC is that it treats model uncertainties and external disturbances as a total disturbance to be
estimated and compensated in real time. Since the interest in industry applications of data-driven
ADRC has intensified in recent years [21–30], research interest in the industry implementation and
related issues has also increased. Among the implementation issues [31,32], parameter tuning is a
challenging task in process control, considering that high order dynamics, un-modeled dynamics,
external disturbances and working condition variations are often present.

Optimization is one of the main methods for ADRC parameter tuning. Various algorithms such
as the particle swarm optimization algorithm [33], reinforcement learning [34], and multi-objective
optimization [35] have been used to tune the control parameters. However, because of the algorithm
complexity and high computation cost, they are seldom implemented in industrial process control.
The linear form of the ADRC and the bandwidth-tuning was firstly introduced by Gao [36]. It was
then widely adopted by researchers and engineers because it allows a simpler formulation in the time
domain and also provides additional insights into the frequency domain. Based on the bandwidth
method, modifications have been made to improve the parameter tuning of the ADRC. Chen et al. [37]
reduced the number of tuning parameters by specifying the desired closed loop dynamics. Tan and
Fu [38] changed the ADRC into a two-degree-of-freedom internal model control (IMC) structure and
suggested parameter tuning via IMC. Those methods are simple and effective for practical use but
the robustness requirements are often not considered. Therefore, the main motivation of this study
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is to propose an effective and straightforward ADRC parameter tuning method that can satisfy the
designed robustness level.

This study aims at deriving quantitative tuning rules for 1st-order ADRC that controls the typical
high-order industrial processes under maximum sensitivity constraint. This is accomplished by firstly
propounding a one-parameter-tuning rule and then establishing the quantitative relationship between
the maximum sensitivity Ms and the tuning parameter. Experimental verification is performed for
the total air flow control in a 1000 MWe coal-fired power plant simulator. Set-point tracking and
disturbance rejection tests under constant and varying loads confirm the good performance and
robustness of the proposed tuning method. Field tests are further conducted on the secondary
air control in a 330 MWe in-service circulating fluidized bed (CFB). Field test results demonstrate
the effectiveness and potential of the proposed maximum sensitivity-constrained ADRC tuning in
industrial applications.

The main contributions of this study are: (i) a simple quantitative ADRC tuning method is
proposed with the help of the asymptote of Nyquist curve, which is solved out for the first time; (ii) the
desired maximum sensitivity is incorporated into the tuning formulas so that the proposed method
can achieve certain robustness level with high precision; (iii) field tests in an in-service 330 MWe CFB
unit verify the effectiveness and depict the potential of the proposed ADRC tuning method.

The paper is organized as follow: Section 2 formulates the problem. The quantitative ADRC
tuning method is developed in Section 3. Section 4 initially demonstrates the feasibility of the proposed
method via power plant simulator. After that, the ADRC control strategy and the proposed tuning
method are implemented in an actual power plant in Section 5. Conclusions are drawn in Section 6.

2. Problem Statement

2.1. Processes Model

It is generally accepted that high-order models capture system behaviors with higher accuracy [39].
However, because of the mathematical difficulties in analyzing high-order processes, few studies on
high-order processes have been conducted, in contrast to extensive studies on low-order processes or
reduced order models. In fact, many industrial processes are of high order [40], such as the superheated
steam temperature, main steam pressure, combustion system including the airflow system studied in
this paper. Distributed parameter systems, which are common in power plant system, are inherently
high-order. In addition, delay-dominated processes can be approximated to high-order processes.
Meanwhile, few studies have addressed the parameter tuning of high-order processes. Therefore, in
this study, the high-order process (1) is considered. It should be noted that all poles of the process
model are considered to be the same for the simplicity of further development.

Gp(s) =
K

(Ts + 1)n , n ≥ 3 (1)

Because most industrial processes are non-oscillatory and self-regulatory, they can be modeled as
described in Equation (1). Usually, the processes parameters n, T, K can be obtained through data-based
modeling approach from the step-input test curve (known as the rising curve) and the data therefrom.
Although the K/(Ts + 1)n-type model may not reflect all the characteristics of a real process, ADRC has
the advantage of estimating and compensating total disturbance that includes modeling errors, so it
can provide good control performance even when the identified high-order process does not have the
exact model information.

2.2. First-Order Active Disturbance Rejection Control System

For the simplicity of implementation in the industrial distributed control system (DCS), the
first-order data-driven ADRC controller is preferred in practice. The schematic diagram of the
first-order linear ADRC is shown in the dashed box of Figure 1.
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The high-order process Gp(s) = K/(Ts + 1)n can be described by the following differential equations

C0
ny + C1

nT
.
y + C2

nT2y(2) + · · ·+ Cn
n Tny(n) = K(u + d), (2)

where d is the external disturbances. Solve out
.
y for from (2) and defined x1 := y and x2 := f . The

state-space representation of Gp(s) can be written as the following form

.
x1 = f + b0u = x2 + b0u

f = −

i 6=1
∑

i=0,2,3...n
Ci

nTix1
(i)

nT +
(

K
nT − b0

)
u + K

nT d
.
x2 =

.
f = η

,

y = x1

(3)

where parameter b0 is the designed control input gain. The term f is called the total disturbance, and
it is extended as the second state x2. η represents the derivation of the total disturbance f. The total
disturbance f includes the higher-order dynamics, parameter error and unknown external disturbance,
which means it cannot be directly measured, thus it needs to be estimated or observed.

Based on Equation (3), a simple and low-order extended state observer (ESO) can be
further designed. { .

z1 = z2 + β1(y− z1) + b0u
.
z2 = β2(y− z1)

(4)

In Equation (4), β1 and β2 are the observer gains. In the ESO, the states z1 and z2 estimate states
x1 and x2, i.e., y and f, respectively. By compensating the estimated total disturbance z2 in real time,

u = (u0 − z2)/b0, (5)

the controlled process can be rewritten as

.
y = f + b0

(
u0 − z2

b0

)
≈ f + b0

(
u0 − f

b0

)
= u0, (6)

which means the process is compensated to become an integrating system. A simple feedback control
can be designed on the compensated model.

u0 = kp(r− z1) (7)

In Equation (7), kp is the feedback controller parameter. The ESO output z1 is used as feedback
signal instead of the measurement of y. The reason is that output z1 works as a filter for measurement
y, so additional filter design is not required.
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Combining (5), (6), and (7), the closed loop system has the approximated dynamics

Gcl(s) ≈ kp/
(
s + kp

)
. (8)

From (3)~(8), it can be seen that a first-order linear ADRC controller has four parameters to tune,
kp, β1, β2, and b0. Using the bandwidth-parameterization introduced by Gao [36], the number of the
tuning parameters can be reduced to three, that is ωc, ωo, and b0, by

kp = ωc, β1 = 2ωo, β2 = ω2
o . (9)

Moreover, by applying the singular perturbation theory [41], the stability of the first-order ADRC
controlling high-order process can be proven mathematically. The stability analysis is provided in
this study.

According to (3) and (4), the state-space representation of the process and ESO can be written in
the form { .

X = AX + Bu + Eη

y = CX{ .
Z = AZ + Bu + L(y− ŷ)
ŷ = CZ

X =
[

x1 x2

]T
, Z =

[
z1 z2

]T

A =

[
0 1
0 0

]
, B =

[
b0

0

]
, E =

[
0
1

]
, C =

[
1 0

]
, L =

[
2ωo

ω2
o

]
(10)

where u is the control feedback law as described in (5) and (7). Then, denote e as the error of the
feedback control loop and ξ̃ as the state estimation error of ESO. Also assume that the reference r is
constant, so

.
r = 0. With the bandwidth-parameterization in (9), the error dynamics of the first-order

data-driven ADRC control system is{ .
e = Ac f e + K f ξ̃
.
ξ̃ = Aeso ξ̃ + Eη

e = [e1] = [x1 − r], ξ̃ =
[

ξ̃1 ξ̃2

]T
=
[

x1 − z1 x2 − z2

]T

Ac f = [−ωc], K f =
[

ωc 1
]
, Aeso =

[
−2ωo 1
−ω2

o 0

] (11)

In order to transform the error dynamics into standard perturbation model, use the state
transformation ξ̃ = diag

[
ω−1

o 1
]
ξ and let ε = 1/ωo, so the first-order data-driven ADRC error

dynamics can be rewritten as 
.
e = Ac f e +

[
1
∑

m=0
εmDmk2−m

]
ξ

ε
.
ξ = Azξ + εEη

, (12)

where

Az =

[
−2 1
−1 0

]
, D0 =

[
0 1

]
, D1 =

[
1 0

]
1
∑

m=0
εmDmk2−m =ε0D0k2 + ε1D1k1 = D0 + εD1ωc.

(13)

In the standard perturbation form of error dynamic system (12), ε is called the singular parameter.
When ωo is relatively large, ε is a small positive parameter. The error dynamic system can be considered
as two parts: the state estimation error dynamics

.
ξ, which has fast response because the poles of ESO
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are relatively large, and the feedback control error dynamics
.
e, which has relatively slow response.

The fast-and-slow characteristics of the error dynamic system constitute the basic feature of the singular
perturbed system. Therefore, the singular perturbation theory is applied here to analyze the stability
of the first-order data-driven ADRC control system.

Before giving the stability theorem, relative concepts about singular perturbation theory are
introduced here. According to the singular perturbed theory, the standard singular perturbation
model is { .

x = f (x, z, ε, t), x(t0) = x0, x ∈ Rn

ε
.
z = g(x, z, ε, t), z(t0) = z0, z ∈ Rm.

(14)

The quasi-steady-state solution x, z can be obtained by letting ε→ 0 .

0 = g(x, z, 0, t)⇒ z = φ(x, t), x = f (x, φ(x, t), 0, t) (15)

The exact solution x, z can be described by the two-time-scale asymptotic expansions, where the
quasi-steady term is defined in t-scale and the transient state is defined in τ-scale.

x = x(t) + x̂(τ), z = z(t) + ẑ(τ) (16)

ẑ(τ) is called the boundary layer system and its dynamic behavior is

dẑ
dτ

= g
(

x0, ẑ(τ) + z(t0), 0, t0

)
. (17)

Then, the well-known fundamental theorem [42] in singular perturbation methods is presented.

Assumption 1. The equilibrium of the boundary layer system is asymptotically stable uniformly in x0 and t0,
and z0 − z(t0) belongs to its domain of attraction.

Assumption 2. The eigenvalues of ∂g/∂z have real parts smaller than a fixed negative number for ε = 0, along
x, z, i.e., Reλ{∂g/∂z} ≤ −c < 0.

Theorem 1. If Assumption 1 and 2 are satisfied, them lim
τ→0

ẑ(τ) = 0, then the approximation x = x(t) + O(ε)

and z = z(t) + ẑ(τ) + O(ε) are valid for all t ∈ [t0, T], and there exists t1 ≥ t0 such that z = z(t) + O(ε).

Then, the stability properties of the data-driven ADRC error dynamic system (12) can be obtained
easily by applying the above theorem. Write the first-order data-driven ADRC error dynamics in the
standard singular perturbation form

.
e = Ac f e +

[
1
∑

m=0
εmDmk2−m

]
ξ = f (e, ξ, ε, t) e(t0) = e0, e ∈ R

ε
.
ξ = Azξ + εEη = g(e, ξ, ε, t) ξ(t0) = ξ0, ξ ∈ R2.

(18)

So, the quasi-steady-state solution is
0 = g

(
e, ξ, 0, t

)
= Azξ + 0 · Eη

.
e = f

(
e, φi(e, t), 0, t

)
= Ac f e +

[
2
∑

m=0
0mDmk3−m

]
· 0 ⇒

 ξ = φi(e, t) =
[

0 0
]T

.
e = Ac f e

, (19)

and the boundary layer system is

dξ̂

dτ
= g

(
e0, ξ̂(τ) + ξ(t0), 0, t0

)
= Az

(
ξ̂(τ) + ξ(t0)

)
+ 0 · Eη ⇒ dξ̂

dτ
= Az ξ̂(τ). (20)
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The equilibrium of the boundary layer system is
[

ξ̂1 ξ̂2

]
=
[

0 0
]

and it is asymptotically

stable uniformly in e0 and t0. Because the boundary layer system (20) is linear and the matrix AZ is
Hurwitz, so the equilibrium ξ̂ = 0 is globally asymptotically stable. So it is obvious that ξ0 − ξ(t0)

belongs to the attraction domain. Assumption 1 is satisfied.

For ε = 0, along e, ξ, Reλ{∂g/∂ξ} = Reλ{Az} =
[
−1 −1

]T
< 0, so Assumption 2 is satisfied.

Therefore, e = e(t) + O(ε) and ξ = ξ(t) + ξ̂(τ) + O(ε) are valid for all t ∈ [t0, T], and there
exists t1 ≥ t0 such that ξ = ξ(t) + O(ε). Since ξ(t) = 0, ξ = O(ε) exists for t1 ≥ t0. For e(t), since
.
e = Ac f e and matrix is Hurwitz considering λ

{
Ac f

}
= −ωc < 0, so e(t) is asymptotically stable and

lim
t→∞

e(t) = 0, so lim
t→∞

e(t) = O(t).

In the above deduction, in order to ensure that ε = 1/ωo is a small positive parameter, so ωo is
positive and it is relatively large. In sum, with the use of the bandwidth-parameterization, there exists
ωc > 0 and ωo > ωo1 > 0 such that the first-order data-driven ADRC error dynamic system (12) is
uniformly asymptotically stable.

2.3. Maximum Sensitivity

The maximum sensitivity Ms is defined as the maximum value of the sensitivity function among
the frequency range. The maximum sensitivity Ms can be seen as the worst-case amplification of
disturbances, and a reasonable range of Ms for control design is 1.0–2.5 [12].

Ms = max
ω

∣∣∣∣ 1
1 + Gl(iω)

∣∣∣∣ ω ∈ (−∞,+∞) (21)

In the definition of the maximum sensitivity, Equation (21), Gl(iω) is the frequency characteristic
of the open-loop transfer function. The maximum sensitivity Ms can be graphically interpreted as the
inverse of the shortest distance from the Nyquist curve to the critical point (−1,0i).

Because the maximum sensitivity Ms is closely related to the open-loop transfer function Gl(s),
the function Gl(s) of the first-order ADRC controlling the high-order processes is necessary for further
analysis. It can be easily obtained from the two-degree-of-freedom control configuration of ADRC [31].

Gl(s) =
(β2 + kpβ1)s + kpβ2

b0s(s + β1 + kp)

K
(Ts + 1)n (22)

Combining Equations (21) and (22) results in

Ms = max
ω

∣∣∣∣∣∣∣
1

1 + (β2+kp β1)ωi+kp β2
b0ωi(ωi+β1+kp)

K
(Tωi+1)n

∣∣∣∣∣∣∣ ω ∈ (−∞,+∞) (23)

3. Derivation of Parameter Tuning Formulas

As stated in Section 1, this study aims at developing a quantitative tuning rule that can provide
a desired robustness level. This is achieved by initially deriving an analytical tuning rule with one
parameter to tune. Subsequently, optimization methods are applied to provide the relationship between
the maximum sensitivity Ms and the tuning parameter.

3.1. One-Parameter-Tuning Method

It is always difficult to directly obtain tuning parameters from Equation (23) because of the strong
nonlinearity and the high-order characteristics of process model. It is highly nonlinear because of the
absolute value operation. In addition, it is at least fifth-degree, which makes it almost impossible to
obtain an explicit solution. However, in this study, this problem is tackled from a different perspective.
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If a certain maximum sensitivity constraint Msc is given, a circle of sensitivity centered at (−1,0i)
with the radius 1/Msc, can be constructed. As shown in Figure 2, if the Nyquist curve of Gl(iω) does
not enter the circle of sensitivity, it means that the shortest distance from the Nyquist curve to the point
(−1,0i) is larger than 1/Msc; therefore, the real maximum sensitivity is smaller than Msc.
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Based on the graphical interpretation, deriving the tuning parameters under a maximum
sensitivity constraint is equivalent to finding the parameters with the Nyquist curve outside the
circle of sensitivity. Fortunately, a vertical asymptote is discovered in the Nyquist curve of Gl(iω),
which is typical for this type of controlled high-order processes. An alternative condition for satisfying
the maximum sensitivity constraint is further proposed: the asymptote of the Nyquist curve of Gl(iω)
should be located to the right side of the circle of sensitivity, so the Nyquist curve does not enter the
sensitivity circle.

The following part will show the deduction of the asymptote function and how the asymptote
condition is used to guide the derivation of the parameter tuning method.

Return to the ADRC parameters. In the bandwidth-parameterization, ωc equals kp; therefore,
it influences the desired closed-loop dynamics. Let the desired settling time be ts* = knT, where k is
the desired settling time factor. Chen et al. [37] proposed ωc = 10/ts* for the second-order ADRC.
By applying this to the first-order ADRC parameter tuning,

ωc = 10/knT. (24)

Parameter ωo denotes the ESO bandwidth. Generally, it determines how fast the ESO can estimate
and cancel the total disturbance. A recommended choice for ωo [36] is

ωo = 10ωc. (25)

By combining Equations (9) and (25) and rewriting Equation (22), the frequency description of the
open-loop transfer function is obtained

Gl(iω) =
120ω2

c ωi + 100ω3
c

b0ωi(ωi + 21ωc)

K
(1 + Tωi)n (26)

According to Figure 2, the Nyquist curve of Gl(iω) approaches the asymptote line when ω→±0,
so the limiting values of Gl(iω) is of concern. Let
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(1 + Tωi)n = p1 + p2i, (27)

where
p1 = 1 + C2

n(Tω)2(−1)1 + C4
n(Tω)4(−1)2 + · · ·

p2 = nTω + C3
n(Tω)3(−1)1 + C5

n(Tω)5(−1)2 + · · · .
(28)

When ω→ 0−, p2
1 + p2

2 = |(1 + Tωi)|2 → 1 , and p1 → 1, p2 → nTω. Then,

lim
ω→0−

Re[Gl(iω)] = lim
ω→0−

2420ω3
c p1 −

(
2100ω4

c /ω + 120ω2
c ω
)

p2

(ω2 + 441ω2
c )
(

p2
1 + p2

2
) K

b0

=
(
5.4875ωc − 4.7619nTω2

c
)
K/b0

lim
ω→0−

Im[Gl(iω)] = lim
ω→0−

−2420ω3
c p2 −

(
2100ω4

c /ω + 120ω2
c ω
)

p1

(ω2 + 441ω2
c )
(

p2
1 + p2

2
) K

b0
= +∞

(29)

Similarly, when ω→ 0+,

lim
ω→0+

Re[Gl(iω)] =
(
5.4875ωc − 4.7619nTω2

c
)
K/b0

lim
ω→0+

Im[Gl(iω)] = −∞.
(30)

This result verifies that the asymptote is vertical and its function is

x =
(

5.4875ωc − 4.7619nTω2
c

)
K/b0. (31)

As shown in Figure 2, the rightmost point of the circle of sensitivity is (−(1 − 1/Msc),0i). Let the
asymptote is on the right side of the sensitivity circle, then(

5.4875ωc − 4.7619nTω2
c
)
K/b0 > −(1− 1/Msc)

⇒ b0 > (4.7619nTωc − 5.4875)ωcKMsc/(Msc − 1).
(32)

According to Equation (23), increasing b0 can reduce the maximum sensitivity Ms. For the purpose
of a conservative design, let b0 be 1.4 times the low limit and the maximum allowable value of the
sensitivity constraint is used, Msc = 2.5. Then,

b0 = (11.1111nTωc − 12.8042)ωcK. (33)

So far, the preliminary tuning formulas of the first-order ADRC applied to the high-order
processes are 

ωc = 10/knT
ωo = 10ωc

b0 = (11.1111nTωc − 12.8042)ωcK.
(34)

It is a one-parameter-tuning rule, where the desired settling time factor k is the tuning parameter
for the trade-off between performance and robustness. Since the sign of b0 should be the same as the
sign of the process gain K [43], a reasonable range of k can be determined from Equation (33), k = 1~7.

3.2. Relationship between Maximum Sensitivity and Tuning Parameter

Because of the conservativeness in the previous design, the tuning formulas in Equation (34)
usually result in a lower maximum sensitivity than Msc = 2.5. In this section, the relationship between
the tuning parameter k and the real maximum sensitivity Ms is found. Users can then specify the
system robustness level by using Ms as a tuning parameter.

Substituting Equations (26) and (34) into Equation (21) provides the expression of
maximum sensitivity
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Ms = max
ω

∣∣∣∣ 1
1 + Gl(iω)

∣∣∣∣ = max
ω

∣∣∣∣∣∣ 1
1 + 1200knTωi+10000

(111.111/k−12.8042)[(knTω)2+210knTωi]
1

(Tωi+1)n

∣∣∣∣∣∣. (35)

It can be seen from the expression that the process gain K does not influence Ms any more, while
the desired settling time factor k, the process order n, and the process time constant T are still related
to Ms.

Simulations have been performed to test how T, n, and k influence Ms in the range of
T/n = 0.01~100, n = 3~20, k = 1~7. The results are plotted in Figure 3.
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Figure 3a shows that the curves of different T/n ratio coincide, which indicates that the process
time constant T has no influence on the maximum sensitivity Ms. This occurs because T and ω appear
in pairs in Equation (35). It means that T is a scaling of frequency ω, so it does not affect the shape of
the Nyquist curve and thus does not affect the value of maximum sensitivity Ms. Figure 3b,c also show
that Ms changes with n logarithmically and changes with k exponentially. Therefore, we propose that

Ms = f (n, k) = a2ek ln(n− a3) + a1. (36)

Solve for k, which gives

k = ln
[

Ms − a1

a2 ln(n− a3)

]
. (37)

Equation (37) calculates a certain k to ensure that the system’s robustness level at Ms. By using
nonlinear fitting techniques, the coefficients a1, a2, and a3 will be further determined.
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First, the data sets Ms, n, and k are required for fitting. For Ms = 1.4~2.0, n = 3~20, the data set
of k can be generated by minimizing the integrated absolute error (IAE) of reference tracking and
disturbance rejection response.

min
k

(IAE), such that Ms = const, n= const. (38)

A dataset of k was therefore determined (see dots in Figure 4). Nonlinear fitting gives the
estimation of coefficients a1 = 1.3966, a2 = 0.0026, a3 = 1.6980 with an average error E = 0.165 and a
variance S = 0.0252. To improve the fitting precision, the regression model for fitting is modified as

k = ln
[

Ms − a1na4

a2na5 ln(n− a3na6)

]
. (39)

Thus, the corresponding estimated coefficients are

a1 = 1.312, a2 = 0.002, a3 = 0.452, a4 = 0.026, a5 = 0.48, a6 = 1.22, (40)

which gives an average fitting error E = 0.047 and a fitting variance S = 0.0055. The fitting result is
shown in Figure 4.
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Figure 4. Multivariable fitting of k. Dots represent the fitting data set and the mesh represent the
fitting results.

To sum up, for a high-order process, K/(Ts + 1)n, if a designed maximum sensitivity Md
s (1.4~2.0)

is given for the controller design, then the first-order ADRC parameters can be calculated through the
following equations. 

k = ln
[

Md
s−1.312n0.026

0.002n0.48 ln(n−0.452n1.22)

]
ωc = 10/knT
ωo = 10ωc

b0 = (11.1111nTωc − 12.8042)ωcK

(41)

3.3. Illustrative Example

The following simulation example will show how the choice of the designed maximum sensitivity
Md

s influences the control performance and robustness. It will also demonstrate that the proposed
tuning formulas can ensure the actual maximum sensitivity Ms of the controlled system achieves the
designed maximum sensitivity Md

s with good accuracy. Consider a process
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G(s) =
1

(10s + 1)5 , (42)

let the designed maximum sensitivity Md
s be 1.4, 1.5, 1.6, 1.7, and 1.8. Several sets of parameters

with different robustness levels are thus calculated from Equation (41). Simulations are performed by
MATLAB Simulink R2016b. Simulations are configured as fix-step type with a step size of 0.1 s, and
the Euler integration method is chosen as the solver algorithm. The output response with a unit step
reference at t = 20 s and a unit step disturbance at t = 250 s is shown in Figure 5. The Nyquist plots are
depicted in Figure 6. The controller parameters and control performance indices are listed in Table 1.
Ts and σ are settling time (under 5% standard) and overshoot. The control performance indices the
integral absolute error (IAE), the total variation (TV), and the integral of the time-weighted absolute
error (ITAE) used in this study are defined in Equation (43). In (43), te and h are the simulation time
and step size.

IAE =

te∫
0

|r(t)− y(t)|dt TV =

te∫
0

|u(t + h)− u(t)|dt ITAE =

te∫
0

t|r(t)− y(t)|dt (43)

Figure 5 shows that a higher designed maximum sensitivity Md
s results in a faster response

to the set point tracking and the disturbance rejection. At the same time, a higher designed
maximum sensitivity Md

s may result in oscillation, which should be regarded as an indication of
decreased robustness.
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s .

Table 1. ADRC controller parameters and performance indices under different designed maximum
sensitivity Md

s for G(s) = 1/(10s + 1)5.

Design
Parameter

Controller Parameters Ms
Tracking Disturbance

Rejection IAE TV
Ts/s σ/% Ts/s σ/%

Md
s = 1.4 ωc = 0.0790, ωo = 0.7903, b0 = 2.4574 1.40 189 0.73 300 75.4 181.7 2.02

Md
s = 1.5 ωc = 0.0503, ωo = 0.5034, b0 = 0.7629 1.51 155 0.26 182 74.6 146.8 2.00

Md
s = 1.6 ωc = 0.0440, ωo = 0.4405, b0 = 0.5137 1.61 138 0.74 159 71.5 134.6 2.10

Md
s = 1.7 ωc = 0.0408, ωo = 0.4081, b0 = 0.4027 1.71 127 1.25 191 68.7 127.6 2.25

Md
s = 1.8 ωc = 0.0387, ωo = 0.3873, b0 = 0.3372 1.80 200 1.53 188 66.5 122.9 2.43
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To be more specific, a higher designed maximum sensitivity Md
s results in a smaller b0, as shown

in Table 1, which means a bigger amplification of the feedback output. That explains the faster response
and the smaller IAE. In addition, Table 1 also shows that increasing Md

s results in an increase in TV of
the control input. The TV can be regarded as an indication of the control efforts and the wear of the
actuators. It should especially be of concern when evaluating the economic performance of the control
system. Thus, the trade-off between performance, robustness, and cost should be carefully considered
when control is applied in a practical scenario.
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The Nyquist plots are depicted in Figure 6. The left figure shows that the Nyquist curves of
different robustness level converge to a vertical asymptote. The right figure is the enlarged view of
the left figure, showing the agreement between the real maximum sensitivity Ms and the designed
maximum sensitivity Md

s . The circles layered with different colors are the circles of sensitivity,
representing different designed maximum sensitivity Md

s . The Nyquist curves are almost tangential
to each of the circles, implying that the proposed tuning method is indeed able to yield a specified
robustness level.

Furthermore, the stability analysis in Section 2.2 can be applied in this simulation example. In the
proposed tuning Formulas (41), the value of ωo is 10 times as ωc, which enables the ADRC control
system to own fast-and-slow characteristics. The initial values of the ESO states are kept as default
in Simulink, which means the initial tracking errors ξ0 6= 0, so ξ0 − ξ(t0) 6= 0. However, because the
equilibrium ξ̂ = 0 is globally stable, ξ0 − ξ(t0) still belongs to the attraction domain. It is obvious that
ωo > 0, and Reλ{Az} < 0, therefore, Assumptions 1 and 2 are satisfied and the data-driven ADRC
control system has asymptotical stability. The simulation results of process (42) validate the stability of
this data-driven ADRC control system.

In addition, the proposed tuning method based on the high-order process can also be applied to
other types of processes if they can be approximated to the form of K/(Ts + 1)n. However, the proposed
tuning method cannot ensure the achievement of the designed maximum sensitivity for other types of
processes. Since the purpose of this study is to derive a tuning method that can achieve the designed
maximum sensitivity, a discussion on the application to other types of processes is not included in
this paper.

4. Experimental Validation on Power Plant Simulator

To validate the effectiveness of the proposed maximum sensitivity-constrained tuning method,
the method is tested on the total airflow control in a 1000 MWe coal-fired power plant simulator.
The simulator and the control systems are constructed on a software named Industry Automation
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Platform (IAP). The calculation step size used in the simulator experiments is 0.1 s, and the data
collection step size is 1 s.

Excessive or inadequate airflow may decrease the combustion efficiency, or even threaten the
combustion stability in the furnace. For this reason, the airflow should be maintained at an optimal
value. In the DCS, the airflow set-point value (SV) is decided by the boiler master demand and fuel
feed. Based on the difference between the SV and the measured airflow (or process value (PV)),
ADRC algorithm gives commands to the forced draft fans to adjust the pitch blade position (scaled in
permillage), which is the manipulated value (MV) of this control system.

By using data-based modeling, the dynamic from the forced draft fans to the total airflow is
determined from open-loop step test data. In order to apply the proposed ADRC tuning method, the
total airflow process is identified to the K/(Ts + 1)n-type process. The model parameters K and T are
identified by the Simulink parameter estimation tool. The optimization method is nonlinear least
squares. The model order n is decided by choosing the identified model with the lowest cost function
value. The identified result is presented in Equation (44) and Figure 7. Although the identified simple
high-order process cannot capture all the complex dynamics of the total air process, the ability of
ADRC in estimating and compensating the un-modeled dynamics enables ADRC to provide good
control results for complex industrial processes.

Gp(s) ≈
3.25

(2.433s + 1)5 (44)

The first-order ADRC algorithm is implemented in the 1000 MWe power plant simulator by
using IAP configuration software. Typical modules used are math operation, integrating module and
Boolean logical operation. Before testing the proposed ADRC method in the power plant simulator
DCS, MATLAB simulations were conducted based on this model to generate suitable parameters.
According to Equation (44), the process gain K, time constant T and order n are 3.25, 2.433, and
5, respectively. The only tuning parameter, namely the designed maximum sensitivity Md

s , is set
as 1.4 to achieve a moderate robustness level. With process parameters n, T, K and the tuning
parameter Md

s known, the first order ADRC parameters ωc, ωo, and b0 can be calculated by the
proposed tuning equations in (41). PI controller used in the total airflow control loop is retuned to
achieve the same maximum sensitivity as that in the ADRC tuning. The retuning of PI parameters is
accomplished through optimization. Since only IAE or ITAE index used as objective function leads to
PI parameters with high overshoot in tracking performance, the objective function is a combination of
ITAE and overshoot indices. The optimization constraint is that maximum sensitivity Ms = 1.4, and
the optimization algorithm used is the sequential quadratic programming.

Energies 2019, 12, x FOR PEER REVIEW 14 of 23 

 

simulator and the control systems are constructed on a software named Industry Automation 
Platform (IAP). The calculation step size used in the simulator experiments is 0.1 s, and the data 
collection step size is 1 s. 

Excessive or inadequate airflow may decrease the combustion efficiency, or even threaten the 
combustion stability in the furnace. For this reason, the airflow should be maintained at an optimal 
value. In the DCS, the airflow set-point value (SV) is decided by the boiler master demand and fuel 
feed. Based on the difference between the SV and the measured airflow (or process value (PV)), 
ADRC algorithm gives commands to the forced draft fans to adjust the pitch blade position (scaled 
in permillage), which is the manipulated value (MV) of this control system. 

By using data-based modeling, the dynamic from the forced draft fans to the total airflow is 
determined from open-loop step test data. In order to apply the proposed ADRC tuning method, the 
total airflow process is identified to the K/(Ts + 1)n-type process. The model parameters K and T are 
identified by the Simulink parameter estimation tool. The optimization method is nonlinear least 
squares. The model order n is decided by choosing the identified model with the lowest cost function 
value. The identified result is presented in Equation (44) and Figure 7. Although the identified simple 
high-order process cannot capture all the complex dynamics of the total air process, the ability of 
ADRC in estimating and compensating the un-modeled dynamics enables ADRC to provide good 
control results for complex industrial processes. 

( )
( )5

3.25

2.433 1
pG s

s
»

+
 (44) 

The first-order ADRC algorithm is implemented in the 1000 MWe power plant simulator by 
using IAP configuration software. Typical modules used are math operation, integrating module and 
Boolean logical operation. Before testing the proposed ADRC method in the power plant simulator 
DCS, MATLAB simulations were conducted based on this model to generate suitable parameters. 
According to Equation (44), the process gain K, time constant T and order n are 3.25, 2.433, and 5, 
respectively. The only tuning parameter, namely the designed maximum sensitivity d

sM , is set as 1.4 
to achieve a moderate robustness level. With process parameters n, T, K and the tuning parameter 

d
sM  known, the first order ADRC parameters ωc, ωo, and b0 can be calculated by the proposed tuning 
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Figure 8 shows the simulation results of the different control and tuning strategies on MATLAB.
Table 2 lists the parameters and performance indices. The original PI parameters result in a relative
slow response because of the conservative tuning. The retuned PI parameters achieve a maximum
sensitivity of 1.4 and it has improved the control performance a lot. The proposed ADRC tuning
method results in the real maximum sensitivity Ms = 1.407, which is very close to the designed value
Md

s = 1.4.
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Table 2. Controller parameter settings, performance, and robustness indices for the total air control.

Method Controller Parameters Ms
Tracking Disturbance Rejection

IAE TV
Ts/s σ/% Ts/s σ/%

ADRC ωc = 0.32, ωo = 3.24, b0 = 32.83 1.4 45 1.2 53 43.4 2097 29
Retuned PI Kp = 0.014, Ki = 0.012 1.4 53 1.2 64 46.3 2450 28
Original PI Kp = 0.04, Ki = 0.009 1.1 105 1.5 103 45.4 3277 28

Figure 9 shows the experimental results in the power plant simulator. Experiments are carried
out under a constant load of 1000 MWe. The set-point is changed from 3100 T/h to 3200 T/h and a
10‰ pitch blade disturbance lasting about 500 s is added to the system around 1100 s. Experiment
results show agreement with the simulation. The retuned PI has improved the control performance of
the original PI. The ADRC shows control advantages in set-point tracking and disturbance rejection.

Since the total airflow control is closely related to the power plant load, the system dynamics
vary with the operating conditions. It is necessary to test different controllers under varying loads.
Figure 10 shows that the proposed ADRC tuning method still maintains good tracking performance
when the load changes from 700 MWe to 1000 MWe.

In Table 3, the average settling time Ts, overshoot σ under constant load condition, the average
tracking error e under varying load condition have been calculated for different control strategies.
It can be seen that the average settling time Ts and the average tracking error e of ADRC control
strategy have been remarkably reduced by about 50%, compared to the retuned PI control. The
overshoot σ during disturbance rejection has also been decreased by 5.7%.

The experimental tests in a coal-fired power plant simulator initially demonstrate the feasibility
of the proposed maximum-constrained maximum sensitivity tuning method. It not only provides
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satisfactory control performance in set-point tracking and disturbance rejection, but also shows the
good robustness under varying working conditions.
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Table 3. Control performance comparison in the total air control experiments under constant and
varying load.

Control Algorithm
Constant Load Varying Load

Average Settling Time Ts (s) Overshoot σ (%) Average Tracking Error e (T/h)

ADRC 52.5 26.5 15.1
Retuned PI 108 28.1 31.2
Original PI 226 30.0 70.5
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5. Field Test on Secondary Air Control in Actual Power Plant

Although the power plant simulator contains the same control system a real power plant, it is not
realistic enough to reflect all the characteristics of a real power plant. The control of actual industrial
processes is more challenging, especially when unknown multi-source disturbances are often present.
To strengthen the conclusions made in Section 4, the proposed ADRC tuning method is further applied
to an actual industrial process. The ADRC control algorithm and the tuning method are applied to the
secondary air control system of a 330 MWe circulating fluidized bed (CFB) unit, which is in commercial
operation in the Shanxi Province in China.

5.1. Process Description

A combustion system is an essential part of a CFB unit. It is the place where fuel and air are
mixed, and the chemical energy of the fuel is converted into thermal energy to heat the working fluid.
Compared to a pulverized coal-fired boiler, the solid materials in a CFB boiler must be fluidized and
circulated by air, making the combustion air system of a CFB boiler more complicated. Figure 11
shows the schematic diagram of the air and smoke system in the CFB unit. The high-pressure blowers
supply high-pressure air to fluidize and overflow the bed material in a loop seal. Primary air fans
supply hot primary air upwardly into the furnace to fluidize the solid particles. At the same time,
a small proportion of the primary air is sent to the coal feeding system as spreading air. The secondary
air fans convey the secondary air to the interface between the lower and upper zone of the furnace,
constituting 20–60% of the total air. The secondary air is added to the furnace to create an oxygen-rich
environment, which improves the combustion efficiency.
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Because the failure of controlling the primary air and the loop seal air can severely damage the
normal fluidization and circulation state of the CFB boiler, while the control of the secondary air
system mainly influences the combustion efficiency, so it is less risky to test the ADRC tuning on the
secondary air system in a commercially operated power plant. Therefore, for safety considerations, the
secondary air system is chosen for the field test.

The ADRC algorithm is implemented in the SUPCON DCS in parallel with the original PID
algorithm. Implemental issues such as the bumpless transfer between the PID, ADRC, and manual
mode, as well as the amplification limit and rate limit, have been carefully solved. The schematic
diagram of the control system is shown in Figure 12. The balance module receives control commands
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from PID or ADRC controller and distributes the control commands to each secondary air fan. Under
normal conditions, the control command is equally distributed to the two air fans. If the working
efficiency of the two fans changes, the operators can add an offset to the balance module to even out
the power output of the two air fans.
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Figure 12. Schematic diagram of the secondary air control system.

5.2. Process Identification

The secondary air flow, scaled in percentage, is controlled by the variable frequency drive (VFD)
attached to the air fan motors. The VFD commands are the control input, which is also scaled in
percentage. In order to use the proposed ADRC tuning method to determine appropriate controller
parameters, the input-step experiment data are collected for identification purposes. Same data-based
modeling method is used as it in the total air identification. The identification results are shown in
Figure 13 and the transfer function is given in Equation (45).

Gp(s) ≈
1.9596

(8.1972s + 1)4 (45)
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5.3. Process Identification

In Equation (45), the secondary air control process is identified into a K/(Ts + 1)n-type model,
then the proposed ADRC tuning method is applicable. The process gain K, time constant T, and order
n of the secondary process are 1.9596, 8.1874, and 4. Since the operation safety should be considered
with special care. In the first test, a set of relatively conservative ADRC parameters are used. By setting
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the designed maximum sensitivity Md
s = 1.4, the initial ADRC parameters are calculated by using

Equation (41). ADRC parameters ωc = 0.0969, ωo = 0.969, and b0 = 4.2721 are put in use. Please note that
ADRC algorithm are in tracking mode when PID controller is working and the ADRC is switched on
when the process is in steady state. During the control algorithm switch process, the bumpless transfer
plays an important role here. Close observation is required after the first set of ADRC parameters
are put in use. Only when no unstable oscillation or frequent control input variation occurs, further
attempt is allowed. After ensuring the stability and robustness, another set of ADRC parameters with
a faster response are calculated to improve the control performance. This is achieved by increasing the
designed maximum sensitivity Md

s = 1.7. Similarly, the retuned ADRC parameters are calculated by
the proposed tuning equation (41), and the obtained ADRC parameters are ωc = 0.0574, ωo = 0.5744,
b0 = 0.9142. In addition, tests are also performed with the PID controller for comparison. The PID
controller parameters are tuned by an experienced field engineer. The tuning process is based on prior
knowledge and trial and error. The initial PI parameters are set as the same PI parameters from another
CFB unit with similar capacity and configuration. The derivative part of PID controller is usually not
used by engineers in power plant unit, because it may introduce noise to the control system and thus
bring oscillation especially when the reference is frequently changed. The proportional gain Kp can be
increased if faster set-point response is required, and it can be decreased if overshoot or oscillation
appears. The integral gain Ki can be increased if the error elimination is slow, and the integral gain Ki
also needs to be decreased when overshoot or oscillation happens. The final retuned PID controller
parameters are decided with Kp = 0.3333, Ki = 0.0067, Kd = 0, which have been put in use for a long
time to ensure enough robustness.

Reference tracking is the main concern for a secondary air control system, because the secondary
air flow must rapidly respond to the varying load reference of the CFB unit. Therefore, the air flow
reference is step-changed for performance tests. In addition, artificial disturbances are not allowed for
this commercially operated power plant, so strict disturbance rejection tests are therefore excluded.
For a fair comparison, reference step tests for the ADRC and PID are performed within the same load
range of 230~240 MWe. The test results of 20-min period are shown in Figures 14 and 15. The control
performance indices including the average settling time Ts, the IAE, ITAE, and the average total
variation of two air fans TV are summarized in Table 4.
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Table 4. Control performance comparison of ADRC and PID in the secondary air control system of a
330 MWe in-service CFB unit.

Control Algorithm Average Settling Time Ts IAE ITAE Average TV

ADRC 86 s 959 5384 22.95
PID >193 s 1 1644 9041 28.17

Improvement >55.4% 41.6% 40.4% 18.5%
1 The average settling time of the PID is not a deterministic value because, in some step test intervals, the reference
value changes before the process value reaches the steady state; therefore, the settling time can only be determined
as being higher than the interval time.

It can be seen from Table 4 that the average settling time Ts, IAE and ITAE indices have been
reduced by more than 40% under the proposed ADRC tuning method, which means the proposed
ADRC tuning has provided a better reference tracking. In the meanwhile, the average total variation
TV of the control input has also been reduced by 18.5%. A reduction in TV indicates less frequent
position changes of the fan blades, which means less tear and wear of the air fans, thus the maintenance
cost could be reduced.

In addition, the stability analysis can also be applied to the two validation tests for airflow control.
Similar to stability analysis of the simulation example in Section 3.3, using the proposed ADRC tuning
method (41) ensures ωc, ωo > 0 and ωo is relatively large. The difference from the simulation example
is that the initial values of ESO in validation tests are not set as 0. In the industrial practice, the
data-driven ADRC algorithm is implemented in parallel with PID control algorithm. The ADRC is
designed to operate under tracking mode when PID controller is in use. For safety consideration, the
ADRC is usually switched on and put into use when the process is in steady state. In this case, the
initial ESO tracking errors ξ0 = 0, so ξ0 − ξ(t0) = 0 and it belongs to the attraction domain. Hence,
Assumptions 1 and 2 are satisfied. The data-driven ADRC controls airflow systems have asymptotical
stability and its stability is validated with experimental and test results.

It can be concluded that the proposed maximum sensitivity ADRC tuning improved the control
performance. The explicit form of the tuning equations facilitates the calculation of the ADRC
parameters. The maximum sensitivity-constrained tuning that provides the desired robustness allows
for a safer implementation of the control algorithm. The field test results show that the proposed
ADRC tuning method has the potential for further industrial applications.
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6. Conclusions

In this paper, the data-driven ADRC control strategy is studied for industrial processes. This study
achieves the goal of deriving maximum sensitivity-constrained tuning formulas for first-order ADRC.

To sum up, the proposed maximum sensitivity constrained ADRC tuning method has
the following advantages: (i) The proposed tuning equations are explicit and simple, so the
data-driven ADRC parameters can be easily obtained without complex programming and calculation.
(ii) The tuning process is easy. The designed maximum sensitivity Md

s is the only tuning parameter,
thus it requires little tuning workload. (iii) The proposed ADRC tuning method can achieve the
designed maximum sensitivity Md

s with high accuracy, which allows the controlled system with
designed robustness level. The disadvantage of the proposed ADRC tuning method is that it does not
apply to non-self-regulating processes, such as integrating processes and unstable processes. Parameter
tuning towards non-self-regulating processes can be future research topics.

The experimental results on the total air flow control in the power plant simulator demonstrate
that the proposed method has advantages in reference tracking and disturbance rejection. The field
tests on the secondary air control in the in-service CFB unit reveal a promising prospect of the proposed
ADRC tuning method in industrial process control. Future work will be focused on more industrial
applications of this maximum sensitivity-constrained ADRC tuning method.
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